Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment
نویسندگان
چکیده
BACKGROUND Agricultural soils represent a potential sink for increasing amounts of different nanomaterials that nowadays inevitably enter the environment. Knowledge on the relation between their actual exposure concentrations and biological effects on crops and symbiotic organisms is therefore of high importance. In this part of a joint companion study, we describe the vertical translocation as well as plant uptake of three different titanium dioxide (nano-)particles (TiO2 NPs) and multi-walled carbon nanotubes (MWCNTs) within a pot experiment with homogenously spiked natural agricultural soil and two plant species (red clover and wheat). RESULTS TiO2 NPs exhibited limited mobility from soil to leachates and did not induce significant titanium uptake into both plant species, although average concentrations were doubled from 4 to 8 mg/kg Ti at the highest exposures. While the mobility of MWCNTs in soil was limited as well, microwave-induced heating suggested MWCNT-plant uptake independent of the exposure concentration. CONCLUSIONS Quantification of actual exposure concentrations with a series of analytical methods confirmed nominal ones in soil mesocosms with red clover and wheat and pointed to low mobility and limited plant uptake of titanium dioxide nanoparticles and carbon nanotubes.
منابع مشابه
Evaluation Uptake and Translocation of Iron Oxide Nanoparticles and Its Effect on Photosynthetic Pigmentation of Chrysanthemum (Chrysanthemum morifolium) ‘Salvador’
Recently, the use of superparamagnetic iron oxide nanoparticles (SPIONS) as a new and promising source of iron in agriculture has been suggested that further investigation is needed before extensive field use. In a greenhouse experiment, the effect of coated magnetite nanoparticles with humic acid (Fe3O4/HA NPs) was investigated on iron deficiency chlorosis and photosynthesis efficiency compare...
متن کاملEffect of Magnetite Nanoparticles on Vegetative Growth, Physiological Parameters and Iron Uptake in Chrysanthemum (Chrysanthemum morifolium) ‘Salvador’
Despite the increasing rate of nanoparticles (NPS) production and their application in agriculture, few studies have focused on their effect on plant growth. So, the present research was conducted in laboratory and greenhouse conditions. First, superparamagnetic iron oxide nanoparticles (SPIONS) with a humic acid coating (Fe3O4/HA) were synthesized in laboratory...
متن کاملIn-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model
The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...
متن کاملIn-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model
The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...
متن کاملEffect of salinity and deficit irrigation on some ions uptake by rapeseed (Brassica napus L.) under two planting methods
ABSTRACT- In this study, effect of deficit irrigation with different salinity levels and planting methods (in-furrow and on-ridge) on nutrient and toxic ions uptake by rapeseed was investigated in a two-year experiment. The experiment was conducted at Research Station, located in the College of Agriculture, Shiraz University, I.R. of Iran. Results indicated that an increase in water stress leve...
متن کامل